¿Dónde radica la seguridad del criptosistema RSA?
Conocer la aplicación de descifrado $D$ equivale a conocer la clave privada $d$, que sólo posee Bob. Y esta clave secreta $d$ no puede conocerse a partir de $(n, e)$ sin el conocimiento de $r=\varphi(n)=(p-1)(p-1)$ (recuérdese que $d$ es un representante del inverso de la clase de $e$ módulo $r=(p-1)(q-1))$. Puede razonarse que conocer $r$ es igual de difícil que saber factorizar $n$ como producto de los primos $p$ y $q$. Si estos primos se han elegido suficientemente grandes (y satisfaciendo ciertas condiciones buenas), $n$ tendrá un valor tan grande que será imposible factorizarlo con los recursos computacionales existentes en este momento. Aquí radica la seguridad del criptosistema RSA. Si una supuesta espía Eve interceptara el mensaje que Alice le envía a Bob, le resultaría imposible averiguar la clave secreta $d$ (y, por tanto, descifrar el mensaje) aún sabiendo la clave pública $(n,e)$.