Hoy hemos resuelto el problema número 13 de la hoja de problemas del Tema 1. La solución es un poco liosa, pero nos ha servido para repasar algunos resultados y técnicas relacionados con órdenes de elementos.
Hemos comenzado también el Tema 2 (Homomorfismos de grupos). Hemos definido el concepto de homomorfismo de grupos (que es el análogo al de “aplicación lineal” en álgebra lineal) y hemos definido los diversos tipos de homomorfismos según sean inyectivos, suprayectivos o biyectivos (monomorfismo, epimorfismo o isomorfismo). Un homomorfismo de un grupo $G$ en sí mismo se dice que es un endomorfismo. Un automorfismo es un endomorfismo que es también isomorfismo. Son conceptos que os resultarán familiares (por el álgebra lineal).
En la próxima clase resolveremos algún problema más y continuaremos con la teoría del Tema 2.