Aplicaciones de la teoría de anillos
Describimos someramente, a continuación, una de las aplicaciones más básicas del Álgebra Conmutativa: resolución de sistemas de ecuaciones polinómicas. Si $A$ es un anillo y $x$ es una indeterminada, denotemos por $A[x]$ al conjunto de expresiones formales del tipo $$a_0+a_1x+\cdots+a_nx^n,$$ donde $a_i\in A$ para todo $i$ y $n$ es un número entero no negativo. Una […]
Proofs from the book
Proofs from the book es un libro de demostraciones matemáticas de Martin Aigner y Günter M. Ziegler. Está dedicado al matemático Paul Erdős, que a menudo se refería a «El Libro» donde Dios guardaba las demostraciones más elegantes de cada teorema matemático. Durante una conferencia en 1985, Erdős dijo que un matemático «no tiene que creer en Dios, pero debería creer en El Libro».
Clase del 28 de noviembre (2 horas)
Definimos la noción de «cuerpo» como un anillo de divisón conmutativo. Como ejemplos, mostramos que el anillo de los enteros no es un cuerpo (puesto que sus únicas unidades son 1 y -1) y que $\mathbb{Q}$, $\mathbb{R}$, $\mathbb{C}$ y $\mathbb{Z}_p$ (con $p$ primo) son cuerpos. Como ejercicio, demostramos que una unidad en un anillo no […]
Clase del 25 de noviembre (1 hora)
Comenzamos el capítulo 4: «Anillos. Anillos de polinomios». Definimos los conceptos de anillo, anillo con identidad y anillo conmutativo. Vimos algunos ejemplos y algunas propiedades básicas. También definimos el concepto de unidad de un anillo y de anillo de división. Probamos que el conjunto de las unidades de un anillo es un grupo (con la […]
Clase del 21 de noviembre (2 horas)
Se dedicó esta clase a resolver varios problemas del capítulo 2.
Clase del 18 de noviembre (1 hora)
Probamos que cualquier grupo cíclico infinito es isomorfo a $(\mathbb{Z},+)$ y que cualquier grupo cíclico finito de orden $n$ es isomorfo a $(\mathbb{Z}_n,+)$. Por tanto, dos grupos cíclicos del mismo orden son isomorfos. Dado un grupo $G$, definimos el grupo de automorfismos de $G$, $Aut(G)$, y el concepto de automorfismo interno. Probamos que el conjunto […]
Clase del 14 de noviembre (2 horas)
Demostramos el Teorema de Cayley, que afirma que cualquier grupo $G$ es isomorfo a un subgrupo de $S_G$ (el grupo de permutaciones del conjunto $G$). En particular, se deduce que cualquier grupo finito de orden $n$ es isomorfo a un subgrupo de $S_n$. Así pues, todos los grupos finitos «se realizan» como subgrupos de algún […]
Clase del 11 de noviembre (1 hora)
Demostramos el Teorema de Correspondencia, que afirma que, dado un grupo $G$ y un subrupo normal $N$, los subgrupos del grupo cociente $G/N$ son exactamente aquellos de la forma $K/N$, siendo $K$ un subgrupo de $G$ que contiene a $N$.