Aplicaciones de la teoría de anillos
Describimos someramente, a continuación, una de las aplicaciones más básicas del Álgebra Conmutativa: resolución de sistemas de ecuaciones polinómicas.
Si $A$ es un anillo y $x$ es una indeterminada, denotemos por $A[x]$ al conjunto de expresiones formales del tipo $$a_0+a_1x+\cdots+a_nx^n,$$ donde $a_i\in A$ para todo $i$ y $n$ es un número entero no negativo. Una expresión de este tipo se denomina polinomio con coeficientes en $A$ e indeterminada $x$. Ya habéis trabajado con polinomios en Educación Secundaria y en Bachillerato; la única diferencia es que los coeficientes que usábais eran números reales y aquí se permiten coeficientes en cualquier anillo $A$. También habéis visto que dos polinomios se pueden sumar y multiplicar. En el caso más general que nos ocupa, la suma y el producto de polinomios se definen igual. Es sencillo probar que $(A[x],+,\cdot)$ tiene estructura de anillo.
Podemos considerar también polinomios en más indeterminadas. Si $x_1,…,x_n$ es un conjunto de indeterminadas, se denomina monomio en $x_1,…,x_n$ a cualquier expresión del tipo $x_1^{\alpha_1}\cdots x_n^{\alpha_n}$, donde los exponentes $\alpha_i$ son enteros no negativos. Dicho de otro modo, un monomio es un producto de potencias de las indeterminadas. Se denomina polinomio en $x_1,\ldots,x_n$ con coeficientes en $A$ a cualquier combinación lineal de monomios con coeficientes en $A$. El conjunto de todos estos polinomios se denota por $A[x_1,\ldots,x_n]$. Por ejemplo, si consideramos dos indeterminadas $x,y$, las expresiones $0$, $3$, $2+5x+yxy^2$ y $x^2y-7xy^5-12x^7$ son ejemplos de polinomios en $\mathbb{Z}[x,y]$. De manera totalmente análoga (y natural) al caso de $A[x]$, se definen la suma y el producto de polinomios en $A[x_1,\ldots,x_n]$. Además, $(A[x_1,\ldots,x_n],+,\cdot)$ también tiene estructura de anillo (denominado anillo de polinomios en las indeterminadas $x_1,\ldots,x_n$).
Vamos a centrarnos en anillos de polinomios con coeficientes en un cuerpo $K$. Es decir, anillos del tipo $K[x_1,\ldots,x_n]$. Vamos a considerar, como ejemplo, $K=\mathbb{C}$ (el cuerpo de los números complejos) y vamos a tomar dos indeterminadas $x,y$.
Vamos a considerar el siguiente sistema de ecuaciones con coeficientes en $\mathbb{C}$: $$f:=xy^2-2x-y^2+2=0,$$ $$g:=x^2y-x^2+y+1=0.$$ Nuestro objetivo va a ser resolver dicho sistema de ecuaciones, es decir, encontrar todos los pares de números complejos $(x,y)$ que satisfacen estas dos ecuaciones.
Esto no parece fácil, a simple vista. Veremos (someramente, sin detalles) que determinados resultados de álgebra conmutativa nos van a permitir resolver este sistema.
Fijémonos en que los primeros miembros de las ecuaciones, $f$ y $g$, son polinomios con dos indeterminadas ($x,y$) y coeficientes en $\mathbb{C}$. Es decir, $f,g\in \mathbb{C}[x,y]$. Lo que buscamos al resolver el sistema de ecuaciones es el conjunto de ceros comunes a $f$ y a $g$, entendiéndose como cero de un polinomio $h\in \mathbb{C}[x,y]$ un punto $(a,b)\in \mathbb{C}\times \mathbb{C}$ en el que se anula $h$ (es decir, tal que $h(a,b)=0$).
Introduzcamos un poco de notación: si $S$ es un conjunto de polinomios en $\mathbb{C}[x,y]$, denotaremos por $V(S)$ al conjunto de todos los puntos $(a,b)\in \mathbb{C}\times \mathbb{C}$ tales que $h(a,b)=0$ para todo $h\in S$. Dicho de otro modo, $V(S)$ es el conjunto de ceros comunes a todos los polinomios de $S$. En nuestro ejemplo, lo que buscamos es el conjunto $V(\{f,g\})$.
La primera observación importante es la siguiente: si $\langle f,g\rangle$ es el ideal de $\mathbb{C}[x,y]$ generado por $f$ y $g$ entonces $V(\{f,g\})=V(\langle f, g\rangle)$. Dicho de otro modo, el conjunto de ceros comunes a $f$ y a $g$ es exactamente el mismo que el conjunto de ceros comunes a todos los polinomios pertenecientes al ideal que generan $f$ y $g$. Veamos esto:
Si $(a,b)\in V(\{f,g\})$ y $h$ es un polinomio perteneciente al ideal $\langle f,g\rangle$ entonces $h(a,b)=0$. En efecto: sabemos (lo hemos visto en teoría) que los elementos de $\langle f,g\rangle$ son exactamente todas las combinaciones lineales $f$ y $g$ con coeficientes en en anillo (que, en este caso, es $\mathbb{C}[x,y]$. Por tanto, existen dos polinomios $h_1,h_2\in \mathbb{C}[x,y]$ tales que $h=h_1f+h_2g$. Evaluando $h$ en $(a,b)$ se tiene que $h(a,b)=h_1(a,b)f(a,b)+h_2(a,b)g(a,b)=0$, donde la última igualdad es consecuencia del hecho de que $(a,b)\in V(\{f,g\})$ (es decir, de que $(a,b)$ sea un cero común a $f$ y a $g$). Esto prueba la inclusión $V(\{f,g\})\subseteq V(\langle f, g\rangle)$.
La otra inclusión es clara, ya que tanto $f$ como $g$ pertenecen al ideal $\langle f, g\rangle$.
Por tanto, el conjunto de soluciones del sistema de ecuaciones anterior no depende de las ecuaciones específicas $f=0$ y $g=0$ sino más bien del ideal generado por $f$ y $g$. Así pues, si logramos encontrar un sistema de generadores de $\langle f,g\rangle$ que sea mejor (en el sentido de que las ecuaciones que determinen se puedan resolver fácilmente) habremos ganado.
Hay técnicas de Álgebra Conmutativa Computacional que permiten hacer esto. Dado un ideal de un anillo de polinomios, usando la Teoría de bases de Groebner (de la cual no es pertinente dar más detalles aquí), puede calcularse un conjunto de generadores del ideal «más fácil». En el caso que nos ocupa, puede verse que el conjunto de polinomios $$\{y^3-y^2-2 y+2, x y^2+2 x-y^2+2, x^2+x y^2-2 x+y^2-1\}$$ constituye un sistema generador alternativo del ideal $\langle f,g\rangle$, es decir, $$\langle f,g\rangle=\langle y^3-y^2-2 y+2, x y^2+2 x-y^2+2, x^2+x y^2-2 x+y^2-1 \rangle.$$ Como, por lo dicho antes, $$V(\{f,g\})=V(\langle f,g\rangle)=V(\langle y^3-y^2-2 y+2, x y^2+2 x-y^2+2, x^2+x y^2-2 x+y^2-1 \rangle),$$ resulta que nuestro sistema de ecuaciones inicial es equivalente al sistema siguiente: $$y^3-y^2-2 y+2=0,$$ $$x y^2+2 x-y^2+2=0,$$ $$x^2+x y^2-2 x+y^2-1=0.$$
Observemos que la primera ecuación sólo depende de $y$ (no depende de $x$). Podemos, por tanto, resolver esta ecuación en $y$ (que tiene una sola incógnita) y calcular todos los valores de $y$ posibles en las soluciones. Sustituyendo estos valores en las dos ecuaciones siguientes pueden calcularse los valores de $x$ correspondientes. De esta manera, seremos capaces de resolver el sistema. Si hacemos esto veremos que las soluciones de nuestro sistema son las siguientes: $$ (1,1),(i, \sqrt{2}),(-i, \sqrt{2}),(i,-\sqrt{2}),(-i,-\sqrt{2}).$$
Proofs from the book
Proofs from the book es un libro de demostraciones matemáticas de Martin Aigner y Günter M. Ziegler. Está dedicado al matemático Paul Erdős, que a menudo se refería a «El Libro» donde Dios guardaba las demostraciones más elegantes de cada teorema matemático. Durante una conferencia en 1985, Erdős dijo que un matemático «no tiene que creer en Dios, pero debería creer en El Libro».
Clase del 28 de noviembre (2 horas)
Definimos la noción de «cuerpo» como un anillo de divisón conmutativo. Como ejemplos, mostramos que el anillo de los enteros no es un cuerpo (puesto que sus únicas unidades son 1 y -1) y que $\mathbb{Q}$, $\mathbb{R}$, $\mathbb{C}$ y $\mathbb{Z}_p$ (con $p$ primo) son cuerpos.
Como ejercicio, demostramos que una unidad en un anillo no puede ser divisor de cero.
Definimos las nociones de subanillo y subcuerpo, proporcionando una caracterización de cada una de ellas (Ejercicio 4.6).
Definimos también la noción de ideal de un anillo, proporcionando una caracterización en el Ejercicio 4.7. Como primeros ejemplos mostramos que los ideales de $\mathbb{Z}$ son $n\mathbb{Z}$, con $n\in \mathbb{Z}$.
Probamos que si un ideal contiene una unidad del anillo, entonces el ideal coincide con el anillo. Este resultado se usa a menudo en las demostraciones: para probar que un ideal $I$ de un anillo $A$, suele demostrarse que $1\in I$. Como consecuencia vemos que los únicos ideales de un anillo de división (en particular, de un cuerpo) son $\{0\}$ y el propio anillo.
Hemos definido la suma de dos ideales y hemos probado que es un ideal. También hemos probado que la intersección de ideales es un ideal.
Hemos definido el concepto de ideal generado por un conjunto $S$ (denotado por $\langle S\rangle$) como la intersección de todos los ideales que contienen a $S$ (esto es un ideal por lo dicho en el párrafo anterior). Si $I$ es un ideal de un anillo $A$ tal que $I=\langle S \rangle$ se dice que $S$ es un sistema generador, o una base, de $I$.
Hemos demostrado que si $A$ es un anillo conmutativo e $I=\langle S \rangle$, donde $S\subseteq A$, entonces el ideal $I$ coincide con el conjunto de todas las combinaciones lineales finitas de elementos de $S$ con coeficientes en $A$.
Un ideal $I$ de un anillo $A$ se dice que es principal si puede ser generado por un solo elemento de $A$, es decir, si existe $a\in A$ tal que $I=\langle a \rangle$. Además, en el caso en que $A$ sea conmutativo, por el párrafo anterior se tiene que $\langle a\rangle=Aa=aA$.
Hemos demostrado que, si $A$ es un anillo conmutativo, $a\in A$ y $u$ es una unidad de $A$ entonces $\langle a \rangle=\langle ua\rangle$, es decir, un ideal principal no cambia si multiplicamos su generador por una unidad.
Hemos definido el concepto de anillo de ideales principales como un anillo en el que todos sus ideales son principales. Un anillo de ideales principales que es, además, un dominio de integridad, se dice que es un dominio de ideales principales. Un ejemplo es $(\mathbb{Z},+,\cdot)$.
Dado un anillo $A$ y un ideal $I$ de $A$, como $(I,+)$ es un subgrupo de $(A,+)$ (que es normal, al ser $(A,+)$ abeliano), sabemos que $(A/I,+)$ es un grupo (grupo cociente). Hemos visto que, además, $A/I$ tiene estructura de anillo (que se denomina anillo cociente). Además, si $A$ es conmutativo, $A/I$ también lo es.
Finalmente, hemos visto la definición de homomorfismo de anillos.
Clase del 25 de noviembre (1 hora)
Comenzamos el capítulo 4: «Anillos. Anillos de polinomios». Definimos los conceptos de anillo, anillo con identidad y anillo conmutativo. Vimos algunos ejemplos y algunas propiedades básicas. También definimos el concepto de unidad de un anillo y de anillo de división. Probamos que el conjunto de las unidades de un anillo es un grupo (con la operación producto). Finalmente definimos el concepto de divisor de cero y de dominio de integridad.
Clase del 21 de noviembre (2 horas)
Se dedicó esta clase a resolver varios problemas del capítulo 2.
Clase del 18 de noviembre (1 hora)
Probamos que cualquier grupo cíclico infinito es isomorfo a $(\mathbb{Z},+)$ y que cualquier grupo cíclico finito de orden $n$ es isomorfo a $(\mathbb{Z}_n,+)$. Por tanto, dos grupos cíclicos del mismo orden son isomorfos.
Dado un grupo $G$, definimos el grupo de automorfismos de $G$, $Aut(G)$, y el concepto de automorfismo interno. Probamos que el conjunto $Int(G)$ formado por los automorfismos internos de $G$ es un subgrupo normal de $Aut(G)$ y que, además, es isomorfo a $G/Z(G)$.