En la clase de hoy hemos probado el Teorema de Lagrange, que afirma que, dado un grupo finito $G$ y un subgrupo $H$ de $G$, el orden de $G$ es igual al producto del orden de $H$ por su índice. Como consecuencia directa de este resultado se infiere que el orden de cualquier subgrupo de un grupo finito $G$ tiene que ser un divisor de $|G|$. También, dado un elemento $g\in G$, como $o(g)$ coincide con el orden del subgrupo generado por $g$, $\langle g \rangle$, se tiene como consecuencia que $o(g)$ es un divisor de $|G|$.
Hemos demostrado, como corolario del Teorema de Lagrange, la propiedad de “transitividad de índices” y también la fórmula que permite calcular el “cardinal” de $HK$, cuando $H$ y $K$ son sobgrupos de un grupo finito $G$.
Hay que tener en cuenta aquí que $HK$ no es necesariamente un subgrupo de $G$ (hemos visto un ejemplo de ello). Más adelante veremos un resultado que caracterizará aquellas situaciones en las que el producto de dos subgrupos es un subgrupo.
En la siguiente clase probaremos otras consecuencias del Teorema de Lagrange y, posteriormente, nos plantearemos la siguiente cuestión: dado un grupo $G$ y un subgrupo $H$ de $G$, ¿cuándo el conjunto de sus clases a derecha, $\{Hx\mid x\in G\}$, tiene estructura de grupo? Veremos que esto ocurre cuando $H$ pertenece a una clase muy importante de subgrupos: los subgrupos normales.