Processing math: 100%

Inicio » Diario de clase » Clase del 28 de noviembre (2 horas)

Mi email: framonde@mat.upv.es

noviembre 2024
L M X J V S D
 123
45678910
11121314151617
18192021222324
252627282930  

Comentarios recientes

No hay comentarios que mostrar.
Videos interesantes

Introducción a la Teoría de Grupos: https://www.youtube.com/watch?v=RnqwFpyqJFw

Concepto de grupo: https://www.youtube.com/watch?v=g7L_r6zw4-c

Concepto de subgrupo y sistema generador: https://www.youtube.com/watch?v=3ydwbo2OrnA

Clases módulo un subgrupo (o clases laterales): https://www.youtube.com/watch?v=cIVUs2z0-lg

Sobre la clasificación de los grupos simples finitos: https://youtu.be/bKi1i_49yrw?si=ZJVOGfVU-LyEvNAW

Clase del 28 de noviembre (2 horas)

Definimos la noción de «cuerpo» como un anillo de divisón conmutativo. Como ejemplos, mostramos que el anillo de los enteros no es un cuerpo (puesto que sus únicas unidades son 1 y -1) y que Q, R, C y Zp (con p primo) son cuerpos.

Como ejercicio, demostramos que una unidad en un anillo no puede ser divisor de cero.

Definimos las nociones de subanillo y subcuerpo, proporcionando una caracterización de cada una de ellas (Ejercicio 4.6).

Definimos también la noción de ideal de un anillo, proporcionando una caracterización en el Ejercicio 4.7. Como primeros ejemplos mostramos que los ideales de Z son nZ, con nZ.

Probamos que si un ideal contiene una unidad del anillo, entonces el ideal coincide con el anillo. Este resultado se usa a menudo en las demostraciones: para probar que un ideal I de un anillo A, suele demostrarse que 1I. Como consecuencia vemos que los únicos ideales de un anillo de división (en particular, de un cuerpo) son {0} y el propio anillo.

Hemos definido la suma de dos ideales y hemos probado que es un ideal. También hemos probado que la intersección de ideales es un ideal.

Hemos definido el concepto de ideal generado por un conjunto S (denotado por S) como la intersección de todos los ideales que contienen a S (esto es un ideal por lo dicho en el párrafo anterior). Si I es un ideal de un anillo A tal que I=S se dice que S es un sistema generador, o una base, de I.

Hemos demostrado que si A es un anillo conmutativo e I=S, donde SA, entonces el ideal I coincide con el conjunto de todas las combinaciones lineales finitas de elementos de S con coeficientes en A.

Un ideal I de un anillo A se dice que es principal si puede ser generado por un solo elemento de A, es decir, si existe aA tal que I=a. Además, en el caso en que A sea conmutativo, por el párrafo anterior se tiene que a=Aa=aA.

Hemos demostrado que, si A es un anillo conmutativo, aA y u es una unidad de A entonces a=ua, es decir, un ideal principal no cambia si multiplicamos su generador por una unidad.

Hemos definido el concepto de anillo de ideales principales como un anillo en el que todos sus ideales son principales. Un anillo de ideales principales que es, además, un dominio de integridad, se dice que es un dominio de ideales principales. Un ejemplo es (Z,+,).

Dado un anillo A y un ideal I de A, como (I,+) es un subgrupo de (A,+) (que es normal, al ser (A,+) abeliano), sabemos que (A/I,+) es un grupo (grupo cociente). Hemos visto que, además, A/I tiene estructura de anillo (que se denomina anillo cociente). Además, si A es conmutativo, A/I también lo es.

Finalmente, hemos visto la definición de homomorfismo de anillos.