Hemos definido el concepto de ideal primo de un anillo conmutativo $A$ como un ideal $I$ distinto de $A$ tal que se satisface la siguiente implicación: si $a,b\in A$ y $ab\in I$ entonces $a\in I$ o $b\in I$.
Hemos probado la siguiente caracterización: un ideal $I$ de $A$ es primo si y sólo si el anillo cociente $A/I$ es un dominio de integridad.
También hemos definido el concepto de ideal maximal de un anillo $A$ como aquel ideal $I$ de $A$ que satisface la siguiente implicación: si $J$ es un ideal de $A$ tal que $I\subseteq J\subseteq A$ entonces $J=I$ o $J=A$. Dicho de otro modo, si no existen ideales intermedios entre $I$ y $A$. Hemos probado que, en el caso de ser el anillo $A$ conmutativo, un ideal $I$ es maximal si y sólo si el anillo cociente $A/I$ es un cuerpo.