Inicio » RSA

Archivos de la categoría: RSA

Mi email: framonde@mat.upv.es

Mi despacho: Edificio 1H, 2ª planta, despacho 204

PoliformaT

agosto 2025
L M X J V S D
 123
45678910
11121314151617
18192021222324
25262728293031

Comentarios recientes

No hay comentarios que mostrar.
Videos interesantes

Introducción a la Teoría de Grupos: https://www.youtube.com/watch?v=RnqwFpyqJFw

Concepto de grupo: https://www.youtube.com/watch?v=g7L_r6zw4-c

Concepto de subgrupo y sistema generador: https://www.youtube.com/watch?v=3ydwbo2OrnA

Clases módulo un subgrupo (o clases laterales): https://www.youtube.com/watch?v=cIVUs2z0-lg

Sobre la clasificación de los grupos simples finitos: https://youtu.be/bKi1i_49yrw?si=ZJVOGfVU-LyEvNAW

Aplicaciones del álgebra a la criptografía: el criptosistema RSA (parte 6)

¿Dónde radica la seguridad del criptosistema RSA? Conocer la aplicación de descifrado $D$ equivale a conocer la clave privada $d$, que sólo posee Bob. Y esta clave secreta $d$ no puede conocerse a partir de $(n, e)$ sin el conocimiento de $r=\varphi(n)=(p-1)(p-1)$ (recuérdese que $d$ es un representante del inverso de la clase de $e$ […]

Continue Reading →

Aplicaciones del álgebra a la criptografía: el criptosistema RSA (parte 5)

Para probar que el proceso de descifrado anteriormente descrito es correcto, hay que demostrar que las aplicaciones de cifrado, C, y descifrado, D, son inversas una de la otra, es decir, $C\circ D=D\circ C=Id$, donde $Id: \mathbb{Z}_n\rightarrow \mathbb{Z}_n$ es la aplicación identidad. Como, para todo $\overline{x}\in \mathbb{Z}_n$, $C(D(\overline{x}))=D(C(\overline{x}))=\overline{x}^{ed}$, es suficiente demostrar que $$x^{ed}\equiv x\; ({\rm […]

Continue Reading →

Aplicaciones del álgebra a la criptografía: el criptosistema RSA (parte 4)

Vamos a diseñar ahora una «función de cifrado», es decir, una función $$C:\mathbb{Z}_n\rightarrow \mathbb{Z}_n$$ tal que, si $\overline{m}$ es el mensaje que Alice quiere cifrar (recordad que Alice ha «preparado» el mensaje para transformarlo en una clase de congruencia módulo $n$), el resultado del cifrado será la imagen de $\overline{m}$ por esta función, es decir, […]

Continue Reading →

Aplicaciones del álgebra a la criptografía: el criptosistema RSA (parte 3)

Ya hemos visto que la clave pública del criptosistema RSA consiste en un par $(n,e)$, donde $n$ es el producto de dos primos muy grandes, $p$ y $q$, y $e$ es un entero entre $1$ y $r-1$ coprimo con $r$, donde $r=\varphi(n)=\varphi(p q)=(p-1)(q-1)$. Veamos ahora cómo Bob determina una clave privada (que sólo conocerá él). […]

Continue Reading →

Aplicaciones del álgebra a la criptografía: el criptosistema RSA (parte 2)

Recordemos que tenemos a Alice y a Bob, y que Alice quiere enviar un mensaje encriptado a Bob (usando una clave pública) para que Bob lo descifre (usando SU clave privada). Para ello, Bob considera dos números primos muy grandes $p$ y $q$ y los multiplica, formando un entero muy grande $n:=pq$. Este valor $n$ […]

Continue Reading →

Aplicaciones del álgebra a la criptografía: el criptosistema RSA (parte 1).

El sistema criptográfico RSA debe su nombre a sus inventores, Ronald Rivest, Adi Shamir y Leonard Adleman, que publicaron por primera vez el método en 1977. Se trata uno de los criptosistemas más utilizados hoy en día, presente como método de seguridad en transacciones bancarias, firma digital, etc. Permite intercambiar información de forma segura entre […]

Continue Reading →